Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Global warming is expected to significantly impact the soil fungal and bacterial microbiomes, yet the predominant ecological response of microbial taxa—whether an increase, decrease, or no change—remains unclear. It is also unknown whether microbial taxa from different evolutionary lineages exhibit common patterns and what factors drive these changes. Here, we analyzed three mid‐term (> 5 years) warming experiments across contrasting dryland and temperate‐boreal ecosystems, encompassing over 500 topsoil samples collected across multiple time points. We found that warming altered the relative abundance of microbial taxa, with both increases and decreases over time. For instance, the relative abundance of bacterial and fungal taxa responding to warming (increase or decrease) accounted for 35.9% and 42.9% in the dryland ecosystem, respectively. Notably, taxa within the same phylum exhibited divergent responses to warming. These ecological shifts were linked to factors such as photosynthetic cover and fungal lifestyle, both of which influence soil functions. Overall, our findings indicate that soil warming can reshape a significant fraction of the microbial community across ecosystems, potentially driving changes in soil functions.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Increases in the abundance of woody species have been reported to affect the provisioning of ecosystem services in drylands worldwide. However, it is virtually unknown how multiple biotic and abiotic drivers, such as climate, grazing, and fire, interact to determine woody dominance across global drylands. We conducted a standardized field survey in 304 plots across 25 countries to assess how climatic features, soil properties, grazing, and fire affect woody dominance in dryland rangelands. Precipitation, temperature, and grazing were key determinants of tree and shrub dominance. The effects of grazing were determined not solely by grazing pressure but also by the dominant livestock species. Interactions between soil, climate, and grazing and differences in responses to these factors between trees and shrubs were key to understanding changes in woody dominance. Our findings suggest that projected changes in climate and grazing pressure may increase woody dominance in drylands, altering their structure and functioning.more » « less
-
Climate change is increasing the frequency and severity of short-term (~1 y) drought events—the most common duration of drought—globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function—aboveground net primary production (ANPP)—was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought.more » « less
-
Abstract Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high‐resolution, long‐read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West‐Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land‐cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early‐diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.more » « less
-
Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and invertebrates) may change as soils develop over centuries to millennia (pedogenesis). Moreover, it is unclear whether belowground biodiversity changes during pedogenesis are similar to the patterns observed for aboveground plant diversity. Here we evaluated the roles of resource availability, nutrient stoichiometry, and soil abiotic factors in driving belowground biodiversity across 16 soil chronosequences (from centuries to millennia) spanning a wide range of globally distributed ecosystem types. Changes in belowground biodiversity during pedogenesis followed two main patterns. In lower-productivity ecosystems (i.e., drier and colder), increases in belowground biodiversity tracked increases in plant cover. In more productive ecosystems (i.e., wetter and warmer), increased acidification during pedogenesis was associated with declines in belowground biodiversity. Changes in the diversity of bacteria, fungi, protists, and invertebrates with pedogenesis were strongly and positively correlated worldwide, highlighting that belowground biodiversity shares similar ecological drivers as soils and ecosystems develop. In general, temporal changes in aboveground plant diversity and belowground biodiversity were not correlated, challenging the common perception that belowground biodiversity should follow similar patterns to those of plant diversity during ecosystem development. Taken together, our findings provide evidence that ecological patterns in belowground biodiversity are predictable across major globally distributed ecosystem types and suggest that shifts in plant cover and soil acidification during ecosystem development are associated with changes in belowground biodiversity over centuries to millennia.more » « less
-
Abstract The capture and use of water are critically important in drylands, which collectively constitute Earth's largest biome. Drylands will likely experience lower and more unreliable rainfall as climatic conditions change over the next century. Dryland soils support a rich community of microphytic organisms (biocrusts), which are critically important because they regulate the delivery and retention of water. Yet despite their hydrological significance, a global synthesis of their effects on hydrology is lacking. We synthesized 2,997 observations from 109 publications to explore how biocrusts affected five hydrological processes (times to ponding and runoff, early [sorptivity] and final [infiltration] stages of water flow into soil, and the rate or volume of runoff) and two hydrological outcomes (moisture storage, sediment production). We found that increasing biocrust cover reduced the time for water to pond on the surface (−40%) and commence runoff (−33%), and reduced infiltration (−34%) and sediment production (−68%). Greater biocrust cover had no significant effect on sorptivity or runoff rate/amount, but increased moisture storage (+14%). Infiltration declined most (−56%) at fine scales, and moisture storage was greatest (+36%) at large scales. Effects of biocrust type (cyanobacteria, lichen, moss, mixed), soil texture (sand, loam, clay), and climatic zone (arid, semiarid, dry subhumid) were nuanced. Our synthesis provides novel insights into the magnitude, processes, and contexts of biocrust effects in drylands. This information is critical to improve our capacity to manage dwindling dryland water supplies as Earth becomes hotter and drier.more » « less
An official website of the United States government
